
Supplementary Note 1:  Finite Temperature Hartree-Fock Calculation of the Quantum 

Capacitance 

  

The dashed green curve in figure 5 is obtained from an approximate finite 

temperature Hartree-Fock calculation of the quantum capacitance of a nanotube that takes 

into account the first two subbands. Following ref. 3 we assume a Coulomb potential 
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 that is constant along the radial direction of the nanotube (R is the 

radius of the tube, x the coordinate along its axis, and ε is the dielectric constant of SiOx). 

The exchange potential for electrons in a given subband is then independent of the 

electron density in the other subband. In addition, we neglect the momentum-dependence 

of the exchange potential and approximate it by a suitable average over momenta. In the 

low-density limit, when the chemical potential lies well below the bottom jE  of the jth 

subband, kTEj >>− µ , we weigh the exchange potentials in this average with the 

occupation numbers of the corresponding states. In a quadratic approximation of the 

electronic dispersion relation appropriate at these low chemical potentials we then find 

that the exchange processes effectively modify the chemical potential by the amount: 
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 Here γ22 −=c , γ  is the Euler constant, jn  is the density of the jth subband, 4=N  is its 

degeneracy, jm*  is its effective mass, and kTmeL jj
*12/ /2 −= γη  is a thermal length. 
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At intermediate densities we interpolate between this expression and the 

corresponding exchange potential at zero temperature obtained in ref. 3 that describes the 

high density limit when kTE j >>−µ and use the approximate exchange potential 
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Screening by a nearby gate has a similar effect on the exchange at low densities. 

The obtained cutoff length in our device is larger than the thermal length and has 

therefore a negligible effect. 

At a given µ  the carrier densities in the two relevant subbands of the nanotube are 

obtained from the Fermi-Dirac distribution as: 
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where )(Ejν  is the single-particle density of states of the  jth subband. 

Solving self-consistently equations S2 and S3 at a given total density, 21 nnn += , 

under the assumption that the Coulomb potential prohibits spatial density fluctuations we 

obtain the dependence of the chemical potential on the total density, )(nµ . From its 

derivative we finally find the quantum contributions to the capacitance in the Hartree-

Fock approximation shown in figure 5: 
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