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The quantum crystal of electrons, predicted more than eighty years ago by 

Eugene Wigner, is still one of the most elusive states of matter. Here, we present 

experiments that observe the one-dimensional Wigner crystal directly, by imaging its 

charge density in real-space. To measure this fragile state without perturbing it, we 

developed a new scanning probe platform that utilizes a pristine carbon nanotube as 

a scanning charge perturbation to image, with minimal invasiveness, the many-body 

electronic density within another nanotube. The obtained images, of few electrons 

confined in one-dimension, match those of strongly interacting crystals, with electrons 

ordered like pearls on a necklace. Comparison to theoretical modeling demonstrates 

the dominance of Coulomb interactions over kinetic energy and the weakness of 

exchange interactions. Our experiments provide direct evidence for this long-sought 

electronic state, and open the way for studying other fragile interacting states by 

imaging their many-body density in real-space.  
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Interacting electrons pay an energetic price for getting near each other. If all 

electrons had similar quantum numbers (e.g. similar spins), this price would be largely 

reduced because the Pauli exclusion principle keeps like particles apart. Wigner’s original 

observation1 was that since Pauli exclusion does not operate between electrons of different 

flavor (spin/valley), they must find a different way to separate in real space to reduce this 

energetic cost. He predicted that when long-ranged Coulomb interactions dominate over 

kinetic energy and disorder, a new crystalline ground state should emerge in which the 

electrons are kept apart irrespective of their flavor. This quantum crystal, which exists even 

in the absence of flavor, was experimentally searched for in the cleanest available 

electronic systems, primarily on the surface of liquid helium and in low-dimensional 

semiconductor heterostructures. On liquid helium, electrons were shown to form classical 

crystals2, but due to an inherent instability could not reach the quantum regime. In 

semiconducting two dimensional electronic systems, transport3,4, microwave5,6, NMR7, 

optical8,9, tunneling10, and bilayer correlations11 measurements provided indications for the 

existence of a crystal at high magnetic fields. In one dimension, thermal and quantum 

fluctuations destroy the long range order, and exclude the crystalline state in an infinite 

system. However, in finite systems quasi-long range order produces crystalline 

correlations, and this one-dimensional Wigner crystal state was studied extensively 

theoretically12–15 and probed experimentally via transport measurements16,17. All 

experiments performed to date, however, probed only macroscopic properties of this state.  

The unambiguous fingerprint of a Wigner crystal lies in its real-space structure, 

which could in principle be observed with a suitable imaging tool. Early scanning probe 

experiments imaged the electronic wavefunctions in carbon nanotubes18–20 (NT) deposited 

on metallic substrates that screened their electronic interactions, and indeed showed nice 

agreement with a non-interacting picture. Subsequent experiments reduced the screening 

by using dielectric substrates or suspended NTs (/nanowires) and observed single electron 

charging physics induced by the scanning tip21–23. These measurements highlighted the 

inherent difficulty of imaging interacting electrons with conventional scanning methods: 

To resolve individual electrons, a macroscopic, metallic or dielectric tip should approach 
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the electrons closer than their mutual separation, inevitably screening their interactions that 

are at the heart of the interacting state. Moreover, macroscopic tips generically carry 

uncontrollable charges that have strong gating effects on an interacting electron system, 

strongly distorting the state under study. To image an interacting state, a new kind of 

scanning probe is therefore needed.  

In this work, we introduce a conceptually new scanning probe platform, which 

utilizes a carbon nanotube as a highly-sensitive, yet minimally-invasive scanning probe for 

imaging the many-body density of strongly interacting electrons. The miniature size of the 

probe and the control over the number of its excess electrons allows it to act as a minimal 

potential perturbation, which can be scanned along another nanotube and image its charge 

distribution. Using this platform we image the density distribution of few confined 

electrons, and demonstrate that they form a strongly-interacting Wigner crystal. Detailed 

theoretical calculations reveal that in the observed crystals, the potential energy largely 

dominates over the kinetic energy, the exchange interactions are small, and the electrons 

are separated few times their zero-point motion, making it one of the most extreme 

interacting states to be measured to date in the solid state.  

Our platform comprises a custom-made scan probe microscope, operating at 

cryogenic temperatures (~10mK), in which two oppositely-facing NT-devices can be 

brought to close proximity (~100nm)24, and scanned along each other (Fig. 1a). One 

device hosts the system-NT, which is used as the one-dimensional system under study (Fig. 

1a, bottom). The second device contains the probe-NT, which is perpendicular to the 

system-NT, and can be scanned along it (Fig. 1a, top). The two devices are assembled using 

our nano-assembly technique25, which yields pristine NTs suspended above an array of 

metallic gates. In the system-NT, it is essential to maintain strong interactions and low 

disorder, both crucial for obtaining a Wigner crystal. This is achieved by suspending the 

NT far above the metallic gates (400		
), thus avoiding their disorder and screening. 

Using ten electrically-independent gates we design a potential that confines the electrons 

between two barriers, ~1	�
 apart, localizing them to the central part of a long suspended 
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Figure 1: Experimental platform for imaging strongly-interacting electrons. a) Scanning 
probe setup consisting of two carbon nanotube (NT) devices - a ‘system-NT’ device (bottom) hosts 
the electrons to be imaged (green ellipse) and a ‘probe-NT’ device (top) containing the probing 
electrons (red). In the experiment the probe-NT is scanned along the system-NT (black arrow). b) 
The system-NT is connected to contacts (yellow) and is suspended above ten gates (blue) used to 
create a potential well (schematically in gray) that confines few electrons to the middle part of the 
suspended NT (green), away from the contacts. The charging of these electrons is detected using 
a charge detector – a separate quantum dot formed on side segment of the same NT (purple). The 
detector is biased by a voltage �
� applied on an external contact, leading to a current, �
�, flowing 
only between the contacts of the charge detector (blue arrow), such that no current passes through 
the main part of the system-NT. 

nanotube (� � 2.3�
) (Fig. 1b), away from the contacts that produce undesirable 

distortions (screening, image charges, disorder, and band bending, see Supp. Info. S1). We 

use highly opaque barriers that prevent hybridization of the confined electron's 

wavefunction with those of the electrons in the rest of the NT. Since transport in this 

situation is highly suppressed, we probe the confined electrons using a charge detector 

located on a separate segment of the same NT (Fig. 1b, purple). The addition of these 

electrons are detected as a small change in the detector’s current, �
�, flowing between the 

two outer contacts of the device (blue arrow, Fig. 1b) and not through the central segment 

of the system-NT. The probe-NT device has an almost identical structure, differing only 

by the NT suspension length (1.6	�
) and number of gates (3). Since the probe gates and 

contacts are perpendicular to the system-NT, the potential they induce remains 

translationally invariant as the probe is scanned along the system, and the only moving 

perturbation comes from the moving NT itself (Supp. Info. S2). 

To demonstrate the basic principle behind our imaging technique, which we term 

‘scanning charge’, we start with the simplest experiments – imaging the charge distribution 

of a single electron confined to a one-dimensional box (Fig. 2a). The basic idea is that by 

measuring the energetic response of the system to a scanned perturbation we can directly 
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determine its density distribution. For simplicity, we assume first that the perturbation 

produced by the probe-NT is highly localized at its position, ������ , ���� ≈

� !� − ������#. To the lowest order, such a perturbation will shift the system’s energy as: 

 $%!������# � &'%|�!� − ������#|'%) ∝ +%!������# (1) 

where +%��� � |'%���|, (Fig. 2a, green), is the density distribution of the confined 

electron wave function, '%���. Thus, by measuring $% as a function of ������, the 

electron’s density profile could be directly resolved26,27. The energy $% is measured by 

referencing it to the Fermi energy in the leads ($- ≡ 0,	Fig. 2a bottom). Starting with the 

level in resonance with $-, a movement of the probe to ������ will shift the energy level 

to $%!������# and generically away from resonance with $-. We then bring the level back 

to resonance by applying a global gate voltage, �/, formed by a proper linear combination 

of the ten gates, chosen to produce a rigid shift of the potential without changing its shape 

(Supp. Info. S1). The applied �/, measured in energy units, is equal to the energy shift $%. 

Thus, by monitoring the gate voltage required to keep the level in resonance for varying 

������, we directly image the charge distribution, �/��������~+%!������#. Note that, in 

reality, the perturbation produced by our probe is not a delta function, but has a spatial 

extent determined by the separation between the two nanotubes and the spatial extent of 

the confined charge in the probe-NT. The measured profile will therefore be the 

convolution of the corresponding point-spread function and the imaged charge density 

distribution. 

The imaging of the charge distribution of a single electron is shown in Figs. 2b,c. 

The population of the first confined electron in the system �01213�4 � 15� is identified by 

its sharp charging peak, observed when we measure the charge detector signal, 6�
�/6�/, 

a function of �/ (Fig. 2b, Supp. Info. S3). To image the charge distribution of this electron, 

we place one electron also in the probe-NT (0����� � 15), scan it along the system-NT, 

and monitor the corresponding shift of the charging peak in gate voltage. This measurement 
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Figure 2: Real-space imaging of the density profile of a single confined electron. a) The 
principle behind our ‘scanning charge’ imaging technique: To image the density distribution of a 
single electron confined in a potential ‘box’ (gray), we place a fixed charge in the probe-NT  and 
scan it across the system-NT. This charge creates a local perturbation at the probe position ������  
(red), which shifts the ground state energy of the system electron, $% (top panels), proportional to 
the local density at the probe position $%!������#~+%�������� (see text). By measuring the global 
gate voltage, �/, needed to keep the charging of this single electron in resonance with the Fermi 
energy of the leads, $-, for varying ������ (bottom panels) we effectively trace the profile of its 

charge distribution �/!������#~+%�������� b) The derivative of the charge detector current,  
6�
�/6�/, with respect to �/ measured as a function �/. The sharp charging peak corresponds to 
the first electron entering the system-NT potential well (throughout the paper the green/red labels 
mark the number of electrons in the system/probe) c) 6�
�/6�/ as a function of �/	and ������. The 
charging resonance traces a curve that gives the charge density of the electon convolved with the 
point spread function of the probe. Upper insets: illustration of the system and probe devices for 
different measurements positions. d) same as in (c) but for different probe charges from 0����� �
05 to 0����� � 35. e) The traces extracted from panel (d) plotted together. Note that to avoid 
unnecessary confusion in describing the physics of the electronic Wigner crystal we used 
throughout the paper the language of electrons, although owing to technical advantages the actual 
measurements were done with holes in the system and probe (Supp. Info. S3 for details). 

 (Fig. 2c) reveals that the charging peak shifts smoothly when ������ traverses between the 

two edges of the confinement well, peaking at its center. This trace yields directly the real-

space charge distribution of the first confined electron, convolved with the point spread 

function of the probe. 

An essential test for the technique is to assess how the measured energy shifts scale 

with the strength of the scanned perturbation, which we can control down to the single 
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electron limit. Figure 2d shows imaging measurements done with 0����� � 05 to 35, 

showing that the energy shifts increase monotonically with increasing number of probing 

electrons. While the overall shape of the imaged charge density remains similar, for larger 

0�����  the peak becomes slightly sharper reflecting an increasing probe invasiveness. By 

directly measuring the movement of the electron in the system due to the scanned probe 

(Supp. Info. S4) we see that for measurements done with 0�����=1 this movement is about 

an order of magnitude smaller than the zero point motion of this electron, putting them in 

the non-invasive limit. In principle, our probe could have also had uncontrolled charges, 

due to localized states in the NT or imperfection in the metals, that can create an even larger 

scanning perturbation than the single charges that we place intentionally. However, our 

measurement with 0����� � 05 displays an energy shift an order of magnitude smaller than 

that with 0����� � 15, demonstrating that in our experiment the spurious charges are much 

less significant than one electron. 

Having established our imaging technique on a single electron, we now turn to 

image the interacting states of many electrons. The measurement is similar to the one 

described above, but is now done around the charging resonance of the 89ℎ electron (8 >

1, Fig. 3a). This resonance occurs when the states with 8 and 8 − 1 electrons are 

energetically degenerate, $< � $<=% (equivalently, � ≡ $< − $<=% � 0). The probe 

perturbation can modify either $< or $<=%, shifting the resonance in gate voltage as: 

�/!������# � $<!������# − $<=%!������# ∝ +<!������# − +<=%!������#, (2) 

The trace �/�������� now images the density of the 8 electron state,	+<���, minus that of 

the 8 − 1 electron state, +<=%���. This quantity, which we term the ‘differential density’ 

is intuitive to understand within the single particle picture – it is merely the density added 

by the last electron to enter the system. 

Along the lines of Wigner’s argument, when electrons have multiple internal 

‘flavors’ (in our case spin and valley), their differential density profiles should be markedly 

different in the non-interacting and the strongly-interacting cases. In the absence of 
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interactions, electrons populate the particle-in-a-box states of the potential, with a 

degeneracy given by the number of flavors. In NTs, this would be a four-fold degeneracy 

due to the spin and valley degrees of freedom. Thus, the spatial distribution of the density 

added by each one of the first four electrons (their differential density) would be identical, 

given by the first particle-in-a-box state. The next four electrons will also look identical, 

having the two spatial peaks of the second particle-in-a-box state, and so on (Fig. 3b, left). 

An utterly different picture emerges in the presence of strong interactions: Since Coulomb 

interactions are flavor independent, all electrons would keep apart independent of their 

flavor. Thus with any additional electron, one more peak will be added to the differential 

density profile (Fig. 3b, right). Imaging the differential density of ‘flavored’ electrons 

should therefore make a clear distinction between these two regimes. 

The imaging of the differential density of the many electron states is shown in Fig. 

3c, where the six panels correspond to the first six electrons added to the system-NT. To 

keep the perturbation minimal, all these scans are performed with one electron in the probe-

NT. Different than Fig. 2c, here we plot the charge detector current, �
�, rather than its 

derivative, which shows a step rather than a peak when an electron is added to the system-

NT. A clear trend can be observed in the imaged differential density profiles – with every 

added electron, one more peak appears in the differential density. These profiles are clearly 

different than those predicted by single particle physics, but nicely match those of a 

strongly interacting crystal. With increasing number of electrons we see that the electron 

spacing is reduced, but also that their overall spread increases, signifying that they are 

confined to a ‘box’ with soft walls. The slight deviation from perfect periodicity stems 

from non-ideality of the potential, explained in Supp. Info. S5. Overall, these images are 

the first direct images of small electronic Wigner crystals. 
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Figure 3: Imaging the differential density of many-electron states. a) Similar to the 

measurements of a single electron (Fig. 2a), here we also probe a charging transition, but now from 

8 − 1 to 8 electrons, with the resonance occurring for $< � $<=%. Consequently the gate voltage 

shifts will now image the differential density �/!������#~+<!������# − +<=%!������#	(see text). 

b) Illustration of the expected differential density of non-interacting vs. strongly-interacting 

electrons in a carbon NT. Non-interacting electrons occupy the particle-in-a-box wavefunctions, 

each being four fold degenerate due to the spin/valley degeneracy in NT (red/blue arrows bottom 

right). Consequently, the real-space distribution of the density added by the first four electrons 

(their differential density) should be identical, being that of the single-peaked, first particle-in-a-

box state. The next four electrons would have an identical double-peaked distribution, and so on. 

For the strongly-interacting case, the electrons separate in real-space (bottom right), and each 

added electron will add one more peak to the differential density profile (top right). c) 

Measurement of �
� as a function of �/ and ������ , around the charging peaks of the first six 

electrons in the system. The emerging curves directly trace the differential density of these many-

electron states, showing they are deep in the strongly-interacting regime. 

To obtain a quantitative understating of our measurements, we performed density 

matrix renormalization group (DMRG) calculations that include long-range Coulomb 

interactions between electrons28. We used a quartic confinement potential, ���� � %

>
?�>, 

that nicely approximates the ‘box’ confinement potential with ‘soft’ walls that is induced 
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by the gates (Supp. Fig. S1b). Figure 4a shows the differential densities of the first six 

electrons, calculated as a function of the spatial coordinate, �/@A (where @A � �ℏ,/
∗?�%/D 

is the natural length scale in this potential and ℏ,
∗ are the Plank constant and the 

electron’s effective mass), and interaction strength, ẼG. The latter is an expression 

estimating the ratio of the average electron spacing and the Bohr radius,  ẼG ≈ H/HI, for 

the quartic potential in the strong interaction limit (Supp. Info. S6). The calculation ranges 

from very weak �ẼG � 0.01) to very strong (ẼG = 100) interactions, which we reach by 

constructing an adaptive basis (Supp. Info. S6). Notably, for all electron numbers, we see 

a clear crossover around ẼG~1 between the non-interacting differential density profiles that 

resemble the single particle wavefunctions, to the strongly-interacting, crystalline profiles 

(e.g. five electrons transform from a two-peak to a five-peak profile). The latter are those 

observed in our experiment. 

By comparing our measurements with the DMRG calculations we can determine 

the strength of interactions in the observed crystals. We extract the Bohr radius from 

independent measurements of the band gap, yielding HI = 8.5	
 (Supp. Info. S3). Setting 

the single free parameter in the theory that describes the shape of the potential to @A =

160	
, we obtain the green lines in the Fig. 4a, indicating the predicted peak positions for 

crystals with different number of electrons. Comparing to the measured positions (stars in 

Figs. 4a) we obtain a good agreement simultaneously for all electron numbers. From the 

ratio of the average inter-electron spacing and the Bohr radius, both obtained directly from 

the measurement, we can estimate ẼG as a function of the number of electrons (Fig. 4b). 

This parameter ranges from ẼG ≈ 50 for two electrons to ẼG ≈ 20 for six electrons, placing 

the observed crystals well within the strongly interacting regime.  

The good agreement between theory and experiments now allows us to determine 

essential properties of the observed crystals. One important property pertains to the role 

played by quantum mechanics. This is readily captured by the Lindeman coefficient, L =

H/�M�4, where H is the inter-electron separation and �M�4 the quantum zero point motion.  
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Figure 4: DMRG calculations of the few-electron Wigner crystals. a) The differential density 

of the first six electrons, calculated with DMRG that includes long-range electronic interactions, 

as a function of the spatial coordinate �/@A and the strength of electronic interactions Ẽ1, ranging 

from very weak (Ẽ1 = 0.01) to very strong (Ẽ1 = 100) interactions. For all electron numbers a 

distinct crossover appears around Ẽ1 ≈ 1 between a differential density that follows the single-

particle picture (e.g. two peaks for five electrons) to that of a strongly-interacting Wigner crystal 

(e.g. five peaks for five electrons). Green stars mark the positions of the peaks measured in the 

experiment, and the green lines mark the calculated positions, where the single free parameter in 

the theory is chosen to be @A = 160	
. b) Ẽ1 vs. the number of electrons, estimated from the 

average inter-electron spacing from the measurements in Fig. 3c, Ẽ1 ≈ H/HI. c) Lindemann 

coefficient L = H/�M�4  for two to six electrons (H, �M�4  are the inter-electron spacing and their 

zero point motion), calculated for the Ẽ1 that fits the experiments. d) The exchange energy N as a 

function of Ẽ1 for two (blue) and three (red) electrons. Black arrows mark the exchange values at 

the Ẽ1 of the experiments, giving N = 1.9	�P for two electrons and N = 539	�P for three electrons. 

The L calculated for our crystals for various electron numbers (Supp. Info. S6) is plotted 

in Fig. 4c. For two electrons it is about 4, and it decreases monotonously with increasing 

number of electrons. This shows that with increasing number of electrons, and a 

corresponding increase in electron density, quantum mechanical effects become 

significant. Another central property is the characteristic exchange energy, N, which 
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determines the tendency for magnetic ordering. For two and three electrons we can obtain 

N directly from the low energy spectrum calculated by DMRG (Supp. Info. S6). This is 

plotted as a function of ẼG in Fig. 4d. As expected, N decreases steeply with increasing ẼG. 

At the ẼG values that correspond to our measurements, N~1�P for two electrons and 500�P 

for three electrons, being far below the electronic temperature in the experiment, Q� ≈

100
P. This suggests that the observed crystals are in the spin incoherent regime29, where 

their charge degree of freedom is in its quantum ground state but the spin degree of freedom 

is thermalized. With higher electron number, N should become more relevant and magnetic 

correlations might develop. 

Our results provide the first direct images of small 1D Wigner crystals. Given the 

ability to directly image the spatial ordering of interacting electrons, it should now be 

possible to address further basic questions related to the quantum electronic crystal, such 

as the nature of its magnetic ordering or its collective tunneling through barriers. More 

broadly, the new scanning platform developed here, allowing ultra-sensitive imaging of 

single electrons with minimal invasiveness, should allow for the exploration of a much 

wider range of canonical interacting-electrons states of matter, whose imaging was so far 

beyond reach.  
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 Designing the shape of the confinement potential well in the system 

nanotube 

The experiments described in the main text rely on our ability to confine electrons in the system-

NT within a well-defined, disorder-free potential well. Using ten electrically independent gates 

beneath the suspended NT we tailor the shape of the potential well to that shown in Fig. S1a, taking 

into account the following considerations:   

1. Shape - The potential is designed to resemble a ‘box’ potential (as illustrated in Fig 1b in the 

main text), having a flat region between two steep sidewalls. In reality, the walls cannot be 

made infinitely steep, but have a softer rise due to the finite separation between the gates that 

define the potential and the NT. We intentionally chose this separation to be large (ℎ =

400𝑛𝑚) to minimize the screening of the electron-electron interactions in the system by the 

gates.  

2. Size and position – To keep the electrons away from the contact electrodes, we confine them 

only to the central part (𝐿~1𝜇𝑚) of a significantly longer suspended NT (𝐿 = 2.3𝜇𝑚). In this 

way we avoid several artifacts that occur near contacts, which include: 

 Band bending – The difference in the work function of the contact metal and the NT leads 

to bending of the energy bands near the contacts. This effect cannot be gated away using 

the gates since their effect is screened near the contact. 

 Image charges – Surrounding metals create image charges for the electrons in the system 

NT. Away from the contacts this has a negligible effect on the physics described in this 

paper, since there an electron is hovering high above the gates (ℎ = 400𝑛𝑚) leading to an 

image charge that is far away (2ℎ = 800𝑛𝑚) as compared to the distances between 

electrons in our experiment. Moreover, since the separation between the gates and the NT 

does not depend on the lateral position of the electron along the NT, the separation to the 

image charge remains independent of the electron’s coordinate. This is not true near the 

contacts, where the separation between electron and image charge depends on the lateral 

distance from the contact. This leads to a force that attracts the electron to a contact, which 

can severely modify the simple picture of electrons confined in a box and the interpretation 

of the experiment. By confining the electrons far away from the contacts as compared to 

their distance to the gates we avoid this problem altogether.   
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 Localized states – The above two effects, combined with changes of the band gap of the 

NT when it is lying on the contact due to a mechanical tension, often lead to the appearance 

of localized states at the contact edges, which we also avoid by confining the studied 

electrons far away, such that the effect of these localized states is highly screened by the 

gates. 

3. Confining Barriers – The two potential barriers of the confining box are chosen to be tall 

enough to suppress the tunneling of electrons from the box potential well to the rest of the NT, 

thereby eliminating any hybridization of their wave function with those of the electrons in the 

rest of the NT. This makes transport measurements impractical, and thus we use instead charge 

detection as described in the main text. Charge detection requires the electrons to reach a 

thermodynamic equilibrium within the relevant time scales given by the frequencies used in 

the experiment (~1𝑘𝐻𝑧), which is readily achieved even with a tiny residual tunneling through 

the barriers.  

To design the potential properly, we must take into account the electrostatics of all the relevant 

electrodes in our experiment, including also the effect of the gate- and contact-electrodes in the 

probe-NT device. To do this we use a three dimensional finite element simulation (Comsol 

package), which includes the full geometry of both system and probe devices, at the separation 

used in the experiment. We have shown previously that such simulations accurately reproduce the 

potentials measured in similar device geometries1. Note that an important feature in the design of 

the experiment is that the electrodes of the probe-NT are translationally invariant to the scanning 

along the system-NT (see next section). This means that the potential calculated above remains 

invariant during scanning. 

The resulting potential, which is used in the experiment, is shown in Fig. S1a alongside the 

schematics of the device. This soft-wall potential ‘box’ can be well approximated by a quartic 

function, 𝑉(𝑥) =
1

4
𝐴𝑥4, as shown in Fig S1b (dots). We use this approximated form for the DMRG 

calculations in Fig. 4 in the main text and in the Supplementary sections below. 

An essential part of our experiment is the ability to rigidly shift the potential well without 

changing the shape of its bottom part, where the electrons are confined. This is done by defining a 

global gate voltage, 𝑉𝑔, that drives the voltage on the 10 gates along a specific linear combination, 
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𝑉𝑖 = 𝑎𝑖𝑉𝑔 (𝑖 = 1. .10), which maintains the shape of the bottom of the potential well while rigidly 

shifting it. The resulting potential shift induced by 𝑉𝑔 is shown in Fig. S1c. Zooming in to the 

bottom of the potential, where the electrons are bound (Fig. S1d) and plotting the shifted potential 

wells on top of each other, we see that the shape is preserved while shifting. 

 

Figure S1: Designed confinement potential. a. Finite element calculation of the potential profile along the system-

NT for typical voltages used in the experiment. The potential is plotted side by side and to scale with the actual device 

geometry. b. The calculated potential (solid line) with its fit to a quartic form, 𝑉(𝑥) =
1

4
𝐴𝑥4 (dots). c. The change of 

the potential as a function the global gate voltage, 𝑉𝑔, defined by choosing a particular linear combination of the 

voltages on the ten independent gates, 𝑉𝑖 = 𝑎𝑖𝑉𝑔 (𝑖 = 1. .10), such that the bottom of the potential shifts rigidly 

without changing its shape. The curves correspond to 𝑉𝑔 = 0 to 20𝑚𝑉. d. Same curves as in c. but collapsed near the 

bottom, showing that the shape is maintained during the rigid shift. 

 Translational invariance of the electrodes in the probe along the scan 

direction 

For a scanning probe measurement to be minimally invasive, the electronic state that is being 

imaged should not depend on the spatial coordinate of the scanning probe. The Wigner crystal 

state, imaged in the current experiment is easy to perturb. A conventional scanning tip, which is a 

macroscopic object made of a metal or dielectric, will cause local screening and significant gating 

that will strongly modify this state. This motivated our choice to use a NT as the scanning probe, 

whose low dimensionality and small size makes it ineffective in screening. Our ability to control 
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the excess charges in probe NT further allows us to minimize its gating effects. Note, however, 

that in our experiment the probe NT is carried by a macroscopic object – the electrical circuit that 

it is mounted on. When we scan the probe-NT across the system-NT we also move this 

macroscopic circuit. It was therefore crucial to design the geometry of this circuit such that it will 

not create any effects that depend on the scan coordinate. The design includes two essential 

features: 

1. All electrodes on the probe-NT device (gates and contacts) are parallel lines that are 

translationally invariant to the movement along the scan direction. For illustrative purposes in 

Fig 1a in the main text and Fig. S2a below we have ‘sliced’ the electrodes on the probe-NT 

device so the NT is visible, however, in the real device these electrodes extend more than 10𝜇𝑚 

after the position of the NT (see Fig. S2b). Thus, during scanning all electrodes move parallel 

to themselves, so unless they have a significant local defect on them their effect on the system-

NT will not change while scanning. 

2. Nearby metallic electrodes lead to screening of the Coulomb interactions between electrons, 

an essential ingredient of the Wigner crystal. We therefore designed the experiment such that 

all the metallic electrodes are far enough from the system-NT to have negligible screening 

effects. On the system-NT device this is achieved by suspending the NT 400𝑛𝑚 above the 

gates and confining the experiment far from the contacts. Similar suspension height is used in 

the probe-NT device, making sure that the gates of the latter are also far away from the system 

NT. In addition the suspended NT in the probe was chosen to be long enough, such that its 

contact electrodes maintain a large distance from the system-NT (𝐿𝑝𝑟𝑜𝑏𝑒−𝑁𝑇/2 = 800𝑛𝑚) 

throughout the experiment. 

The ultimate test that the scanning of the probe-NT circuit has a negligible effect over the 

system-NT is given in Fig. 2d in the main text. This measurements shows that when a natural 

probe-NT (𝑞𝑝𝑟𝑜𝑏𝑒 = 0𝑒) is scanned along the system-NT, it creates small energy shifts, an order 

of magnitude smaller than those created with 𝑞𝑝𝑟𝑜𝑏𝑒 = 1𝑒. This proves that the total effect due 

to the macroscopic circuit is much smaller than that of a single electron. 
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Figure S2: Translational invariance of the probe gates and contacts. a. A 3D illustration of the scanning geometry 

in our experiment (Similar to Fig 1a in the main text). Note that for illustrative purposes the circuit of the probe-NT 

is ‘sliced’ along the dashed plane such that the probe-NT is visible. b. In the real device the gates (blue) and contacts 

(yellow) extend at least 10𝜇𝑚 beyond the position of the NT and thus their effect is completely invariant under 

scanning. 

 Determining the electron number and energy gap using charge detection  

A crucial part of the current experiment is the ability to determine the number of confined 

electrons, whose density distribution we are imaging. We do this with charge detection, using the 

charge detector dot located on a side segment of the same NT (purple, Fig. S3). In contrast to 

transport experiments, which often miss the first electrons because they have tall potential barriers 

that suppress their conductance, charge detection works even for highly opaque barriers, as long 

as they can reach thermodynamic equilibrium on the relevant time scales of the experiment (milli-

seconds), a condition that is fulfilled in all our measurements. In this section, we present charge 

detection measurements over a wider gate voltage range than in the main text, allowing the 

identification of the first electron and first hole. These measurements also yield the band gap, from 

which we determined the effective mass and the Bohr radius of the electrons, used in the 

quantitative analysis of the data.  

Figure S3 shows the measured derivative of the charge detector current, 𝑑𝐼𝐶𝐷/𝑑𝑉𝑔, plotted as a 

function of the global gate voltage, 𝑉𝑔. Each carrier added to the system gives a sharp peak in this 

trace. The larger spacing in the center represent the band gap, bounded by the charging of the first 

electron and first hole. We note that to avoid unnecessary confusion in the main text, when 
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describing the physics of the electronic Wigner crystal we used the language of electrons, although 

owing to technical advantages the actual measurements were done with holes in the system and 

probe NTs. E.g. the states marked 1ℎ, 2ℎ, 3ℎ in Fig. S3 below correspond to the first three panels 

of imaging experiments in Fig 3 in the main text. 

From fig S3 we can also obtain the magnitude of the energy gap, 𝐸𝑔𝑎𝑝 = 45 ± 5 𝑚𝑒𝑉 (where 

we have used the lever-arm factors of 𝛼 = 0.21 for the holes and 𝛼 = 0.25 for the electrons,  

extracted from Coulomb diamonds, measured independently (not shown)). This measurement 

directly gives the effective electronic mass, 𝑚∗ = 𝐸𝑔𝑎𝑝/2𝑣𝐹
2 = 0.0062𝑚𝑒 (𝑣𝐹 is the Fermi 

velocity and 𝑚𝑒 the bare electron mass). From here we extract the and Bohr radius, 𝑎𝐵 =

𝜀ℏ2/𝑚∗𝑒2 (ℏ, 𝜀 = 1, 𝑒 are the Plank constant, dielectric constant, the electron’s charge), giving 

𝑎𝐵 = 8.5𝑛𝑚. 

 

Figure S3: Determining the charge state of the system. a. Schematic illustration of the setup: the current 𝐼𝐶𝐷  through 

the charge detector (purple) is used to detect the charges in the central confinement well of the system-NT (green) as 

a function of the global gate voltage 𝑉𝑔 applied on the system gates b. Charge detector signal, 𝑑𝐼𝐶𝐷/𝑑𝑉𝑔, as a function 

of 𝑉𝑔, showing the charging peaks of the first three holes 1 − 3ℎ and the first two electrons 1 − 2𝑒, separated by the 

NT band-gap of 𝐸𝑔𝑎𝑝 = 45 ± 5 𝑚𝑒𝑉 (gate voltage was converted to energy using an independently measured average 

lever-arm factor of 𝛼 = 0.23). 

 Determining the probe invasiveness 

The main principle underlying our imaging experiment relies on the fact that to the lowest order 

in the perturbation theory, the energy shift caused by the presence of our scanning probe is 

proportional to the electronic density in the imaged state at the probes’ position (eq. 1 in the main 
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text). This relation is valid for a small, ‘non-invasive’ perturbation, where the presence of the probe 

does not affect the imaged wavefunction. At larger probe perturbations, the next order term 

becomes relevant, reflecting the fact that the probe also modifies the system’s wavefunction, 

making the measurement invasive. The invasiveness can be quantified directly by measuring the 

shift of the electron in the system, induced by the probe, and comparing it to its zero point motion. 

If it is much smaller, then the first order term dominates over the next order ones and the 

measurement can be considered non-invasive. In this section, we provide additional experimental 

data that does exactly that. We start by showing this data for the most stringent case of imaging 

one electron in the system. The one electron state is much more susceptible to polarization than 

the many-electron states, because the latter are stiffer due to Coulomb interactions, absent in the 

former. To image how the electron shifts as the probe moves we take advantage of the multiple 

gates underneath the system nanotube. By measuring their capacitance to the single electron we 

can determine the shift of its center of mass. These measurements show that this shift is much 

smaller than the electrons’ zero point motion (~1/8), placing these measurement in the non-

invasive regime. We show that a crucial component of this non-invasiveness is our design of a 

‘soft’ confinement potential for the electron in the probe. We end by showing additional imaging 

data for two electrons in the system and their comparison to DMRG calculations, showing that 

also there the measurements are safely within the non-invasive limit.  

We begin by measuring the effect of a single electron in the probe on a single electron in the 

system (Fig. S4). The confinement potential of the electron along the system NT (/probe NT) can 

be approximated by a quartic potential 𝑉𝑠(𝑥) =
1

4
𝐴𝑠𝑥4 (𝑉𝑝(𝑥) =

1

4
𝐴𝑝𝑥4). By changing the relative 

strength of these two confinement potentials, 𝐴𝑠/𝐴𝑝, we can cross between two regimes: the ‘soft 

probe’ regime, where the potential along the probe is softer than that along the system (𝐴𝑠/𝐴𝑝  >

1, Fig S4a), and the ‘rigid probe’ regime, where 𝐴𝑠 𝐴𝑝⁄ < 1  (Fig. S4b). An important point to 

notice is that the relative softness of these confinement potentials determines which electron can 

move more easily upon interaction. For a ‘soft probe’, large enough repulsion will shift primarily 

the electron in the probe nanotube, due to its smaller level spacing. As a result, the system 

wavefunction will be hardly modified as the probe scans across it, and the imaging remains non-

invasive, at the price of the response function of the probe becoming somewhat non-linear. In the 
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opposite ‘rigid-probe’ limit, the shift would be primarily that of the system’s electron, making the 

measurement invasive.     

We can now exploit the multiple gates beneath the system nanotube to directly image the 

wavefunction shifts during these scanning experiments and to determine the probe’s invasiveness 

quantitatively. For every fixed position of the probe, we measure the capacitances between the 

individual gates and the electron1. These capacitances vary markedly between the gates depending 

on the local charge density of the electron that is directly above them. By tracking the capacitances 

of the three gates at the center of the potential trap, and fitting them to a parabola, we can monitor 

the center of mass position of the electron very accurately. The gates therefore provide us with a 

‘discrete’ version of imaging.  

Fig. S4c shows the measured center of mass of the electron, 𝑥𝐶𝑂𝑀, as a function of the probe 

position, 𝑥𝑝𝑟𝑜𝑏𝑒, and the relative strength of the probe and system potentials going from the ‘soft 

probe’ regime at 𝐴𝑠/𝐴𝑝 ~2 to the ‘rigid probe’ regime with 𝐴𝑠/𝐴𝑝 ~0.2. Indeed one can see that 

when the probe rigidity increases, the induced shifts also increase, reaching substantial values (~ ±

160𝑛𝑚) for which the measurement is invasive. On the other hand, for the softest probe 

(𝐴𝑠/𝐴𝑝 ~2) the measured shift is small, ±30𝑛𝑚, about 1/8 of the zero point motion smearing of 

the electron in this potential (~260𝑛𝑚). This soft probe is used throughout the experiments in the 

main text, clearly placing our measurements in the non-invasive regime.   
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Figure S4: Probing the invasiveness of a scanning probe with a single electron. a. and b. Experimental setting – 

One electron in the probe NT (red) is scanning a single electron in the system NT (green). The confinement potential 

along the system NT and probe NT (blue) are given by 𝑉𝑠(𝑥) =
1

4
𝐴𝑠𝑥4 and 𝑉𝑝(𝑥) =

1

4
𝐴𝑝𝑥4, where 𝑥 is the coordinate 

along the relevant NT. In the experiment we control the ratio of 𝐴𝑠 and 𝐴𝑝. In the 'soft probe’ limit (𝐴𝑠/𝐴𝑝>1), shown 

in panel a, when the two electrons interact the primary movement will be that of the probe electron (arrow). In the 

‘rigid probe’ limit (𝐴𝑠/𝐴𝑝<1, panel b) the electron in the system will primarily move. c. The center of mass of the 

system’s electron, 𝑥𝐶𝑂𝑀 , determined by measuring its various capacitances to the gates underneath the NT (see text), 

plotted as a function of the probe’s position, 𝑥𝑝𝑟𝑜𝑏𝑒, and 𝐴𝑠/𝐴𝑝. For the softest probe (𝐴𝑠/𝐴𝑝  = 1.87) the total motion 

is ~ ± 30𝑛𝑚, an order of magnitude smaller than the zero point motion of the electron (~260𝑛𝑚), placing the 

measurement in the non-invasive regime.  This soft probe is used throughout the measurements in the main text. 
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As the number of electrons in the system is increased, it is no longer sufficient to measure the 

change in the center of mass of the entire wavefunction, since we are interested in how much the 

lattice structure of the electrons distorts as a result of the probing. In the following, we will measure 

the 2𝑒 state in the system, and estimate how much the inter-electron spacing changes due to the 

probe by measuring its dependence on the probe charge 𝑞𝑝𝑟𝑜𝑏𝑒. 

Figure S5a plots the measured charge detector signal, 𝑑𝐼𝐶𝐷/𝑑𝑉𝑔, as a function of 𝑥𝑝𝑟𝑜𝑏𝑒 and 𝑉𝑔 

around the charging of the second electron in the system-NT, for varying number of electrons in 

the probe-NT (𝑞𝑝𝑟𝑜𝑏𝑒 = 1,2,3) . If the perturbation is small, these traces should image the 

differential density of two electrons, convolved with the point-spread function of the probe (see 

main text). Similar to the images of a single electron shown in the main text, also here we see that 

the magnitude of the energy shifts and the visibility of the double peak increases with increasing 

𝑞𝑝𝑟𝑜𝑏𝑒 (Fig. S5b). When scaling the three graphs to have the same visibility we notice that 

increasing 𝑞𝑝𝑟𝑜𝑏𝑒 leads to a rather small modification in the shape of the curves (Fig. S5c). 

Specifically, we see that the spacing between the two peaks changes only slightly with each 

additional charge in the probe (Fig. S5d), < 10% of its value.  

 

Figure S5: Imaging of the differential density of two electrons in the system-NT as a function of the number of 

electrons in the probe-NT. a. Measurement of the charging peak of the second system-NT electron. Colormap is the 
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charge detector signal, 𝑑𝐼𝐶𝐷/𝑑𝑉𝑔, as a function of 𝑥𝑝𝑟𝑜𝑏𝑒 and 𝑉𝑔. The three panels correspond to different number of 

electrons in the probe-NT, 𝑞𝑝𝑟𝑜𝑏𝑒 = 1,2,3. b. Extracted traces from panel a. c. Same as in b but all traces normalized 

to have the same visibility. d. The separation between the peaks, extracted from panel a, as a function of 𝑞𝑝𝑟𝑜𝑏𝑒. 

To further test the role of the probe 'softness', we performed DMRG calculations that take 

into account the changes in the probe wavefunction as a result of the interaction with the system 

(see section S6 for further details). For each probe position, the ground state energy was calculated 

for one (𝐸1) and two (𝐸2) electrons in the system. Figure S6 shows 𝐸2 − 𝐸1 as a function of 𝑥𝑝𝑟𝑜𝑏𝑒 

and 𝑞𝑝𝑟𝑜𝑏𝑒, calculated for a probe which is assumed to have a rigid charge density that remains 

constant throughout the scan (Fig. S6a), and for a probe with a polarizable wavefunction within a 

potential 𝑉𝑝(𝑥) =
1

4
𝐴𝑝𝑥4, where 𝐴𝑠/𝐴𝑝  = 1.3 (Fig. S6a). The calculation shows that under the 

assumption of a completely rigid probe, the invasiveness is largely over-estimated, giving distorted 

traces with strong cusps that are very different than those observed in the experiment. For a soft 

probe, however, the effect of invasiveness is significantly smaller, better resembling our 

experimental observations (Fig. S5). Figure S6c shows the calculated shifts of the electronic 

density for various position of the probe along the scan (shown by red stars), corresponding to the 

soft probe case in panel b. We can see that in this limit the shifts induced by the probe are small 

compared to the inter-electron spacing and to their zero point motion, giving an additional support 

that the invasiveness in our measurements is small.  



13 

 

 

Figure S6: DMRG calculation of the quantity measured in Fig. S5. These calculations take into account also the 

scanning probe charge.  a. Rigid probe: For each probe position, 𝑥𝑝𝑟𝑜𝑏𝑒, we calculate the total energy of the system 

with two electrons, 𝐸2, and one electron ,𝐸1, and plot the difference, 𝐸1 − 𝐸2 as a function of 𝑥𝑝𝑟𝑜𝑏𝑒. The three traces 

correspond to 𝑞𝑝𝑟𝑜𝑏𝑒 = 1,2,3 (darker blue corresponds to larger 𝑞𝑝𝑟𝑜𝑏𝑒). The calculations are done for a rigid probe 

charge, whose distribution along the probe NT does not depend on the scanning probe coordinate. The separation 

between NTs is taken as 120𝑛𝑚 and with a confinement potential ratio of 𝐴𝑠/𝐴𝑝 = 1.3, and an effective mass ratio 

of 𝑚𝑝/𝑚𝑠 = 4, consistent with the parameters in our experiments. b. Soft probe: Similar calculation to a. with the 

same parameters described above, but including also the electron in the probe in the quantum mechanical calculation. 

Specifically, the wavefunction of the electron in the probe is allowed to change as a function of 𝑥𝑝𝑟𝑜𝑏𝑒. This better 

resembles the experimental data in fig S5. c. The projected charge density of the two electrons (green) from the 

calculation in b., with different panels showing the charge density at different values of  𝑥𝑝𝑟𝑜𝑏𝑒 (marked in red arrows) 

showing that the movement of the electrons throughout the scan is much smaller than their zero-point-motion width.  

 Effects of non-ideality of the potential on the imaged differential density 

The imaging results in figure 3c in the main text show the characteristic behavior expected from 

an electronic crystal, where independent of flavor degeneracy the number of resolved peaks is 

equal to the number of confined electrons. The measurements do show however small deviations 

from a simple periodic structure, mainly in the form of an overall slope in the peak heights. In this 
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supplementary section we explain the origin of this slope and show additional data that 

demonstrates how this slope can be tuned using an electric field along the NT applied by the gates. 

In the experiments we create the confinement potential using the ten gates assuming that our 

devices are pristine and the potential is solely determined by the gates. In reality, there are small 

corrections that come from residual potentials, mostly due to localized states that form near the 

contacts. To minimize these effects we have confined the electrons in the experiment to the central 

part (~1𝜇𝑚) of a long suspended NT (2.3𝜇𝑚), such that they are far away from the contacts and 

the imperfections near the contacts are highly screened by the gates (the gates screen effectively 

on length scales given by twice their separation to the NT (2ℎ = 800𝑛𝑚)). Yet, the tail of the 

screened potential of the localized states can still give a small field along the NT. When a field is 

added to the confining potential, the wavefunctions of the electrons in the trap slightly distort, such 

that the center of mass of the many-body state with 𝑁 electrons is no longer located at the center 

of the trap. Furthermore, the center of mass of states with different number of electrons can shift 

differently (illustrated for one and two electrons in Fig. S7a). Our experiments measure the 

differential density, namely, the density of the 𝑁 electron state minus that of the 𝑁 − 1 electron 

state, which will have 𝑁 peaks of equal height only if the electrons in the 𝑁 − 1 ground state are 

perfectly centered in the ‘holes’ left between the electrons in the 𝑁 electron ground state. A small 

field that shifts the electron positions in the two states differently will thus change the relative 

heights of the peaks in the differential density. To demonstrate this experimentally we show in Fig. 

S7b measurements of the differential density of two electrons, where we have added a constant 

field along the NT by properly biasing the gates, in addition to the confinement potential. The 

differently colored curves correspond to the differential density profiles measured at different 

fields, extracted in a similar way as in Fig. S5 above. Notably, as a function of the field the double 

peaks evolve from nearly symmetric structure to a highly asymmetric structure, demonstrating 

directly how such asymmetry is produced by an external field. 
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Figure S7: Origin of the asymmetry in the differential density. a. If a small linear field is added to the confining 

box potential the position of the electrons will shift. The shift can be different for states with different number of 

electrons, which we illustrate by showing the density of two and one electron states. We measure the differential 

density, which is the subtraction of these two density distributions. In the absence of a field the electronic positions 

will be symmetric around the center and the height of the two peaks in the differential density will be identical. A field 

shifting the position of the electrons will lead to changes in the relative height of the peaks. This is seen clearly in the 

experiment, shown in panel b. where we have intentionally added a field to the confining box using proper voltages 

on the ten gates. The colored traces show the measured differential density profiles of two electrons (similar to Fig S4 

above), at different values of the external field.  

 DMRG calculations with long range Coulomb interactions 

DMRG calculations on a single nanotube 

Our numerical calculations describe 𝑁 electrons interacting via long range Coulomb interactions 

using the Hamiltonian 

 H = H
0
+U , (S1) 

where the single particle part H
0

 incorporates the kinetic energy of the electrons and a quartic 

confining potential, V (x) =
1

4
A x4, 

 , (S2) 

while U =U ({x
i
}) stands for the interaction energy of the particles,  
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 


N

ji ji xx

e
U

1

2

||
, (S3) 

with 𝜀 the dielectric constant. Comparison of the kinetic terms and the confinement energies in 

0H  defines a natural length scale of the quartic confinement well, 𝑙𝑑 = (ℏ2/𝑚∗𝐴)1/6, and a 

corresponding characteristic energy, 𝐸0 = 𝐴𝑙𝑑
4 = 𝐴1/3(ℏ2/𝑚∗)2/3 of the non-interacting 

electrons. These allow us to rewrite the Hamiltonian in terms of the dimensionless coordinates, 

x
i
= x

i
/ l

d
 and express the dimensionless Hamiltonian as 

  . (S4) 

where the parameter 𝜂 is given by the ratio of the natural length scale of the potential, 𝑙𝑑, and the 

Bohr radius, 𝑎𝐵 = 𝜀ℏ2/𝑚∗𝑒2:  

 𝜂 =
𝑙𝑑

𝑎𝐵
=

𝑚∗𝑒2

𝜀ℏ2 (
ℏ2

𝑚∗𝐴
)

1/6

  (S5) 

 

To perform the density matrix renormalization group (DMRG) calculations, we first express the 

Hamiltonian in a second quantized form, 

 , (S6) 

where the 𝑡𝑘𝑙 denote the matrix elements of the single particle Hamiltonian, tkl = j
k
H

0
j
l

/ E
0, 

while Ukl;mn = j
k
j
l
U (x - x ') j

m
j
n

/ E
0 stands for the matrix elements of the Coulomb interaction, 

U (x - x ') = e /e | x - x ' |. The operators 𝑐𝑘𝛼 denote usual electron annihilation operators, with the 

spin 𝜎 and the isospin 𝜏 (chirality) grouped together to a single quantum number (𝜎, 𝜏) → 𝛼 . Our 

Hamiltonian thus takes into account all four spin/isospin flavors of the NT, and the corresponding 

multiple exchange processes. Notice that our Hamiltonian (Eq. S6) does not incorporate spin-orbit 

interaction, and is 𝑆𝑈(4) invariant.  
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The single particle basis |𝜑𝑙=1..𝐷⟩ is somewhat arbitrary, but choosing the right basis may be 

essential for fast and accurate calculations. For smaller values of 𝜂 the choice of basis is not crucial. 

One can use, e.g., harmonic oscillator basis functions or the eigenfunctions of H
0

. Reaching 

larger values of 𝜂, however, is not so trivial, and for that we have used an adaptive basis approach: 

for a given number of electrons 𝑁, we first determine their classical equilibrium positions in the 

confinement landscape by minimizing the total potential energy using a Monte Carlo method, and 

then we construct a delocalized basis set centered at each classical position, typically chosen to be 

harmonic oscillator states with the characteristic length scale 𝑙𝑑. This basis consists of 𝐷 = 𝑁 ⋅ 𝑄 

states, with Q the number of states kept at each site, 𝑄 = 6 − 10. States constructed in this way 

are not orthogonal, and an additional Gram-Schmidt orthogonalization is needed to construct the 

final adaptive single particle basis, |𝜑𝑙=1..𝐷⟩. To compute the Coulomb integrals Ukl;mn
 in this basis, 

we exploited the translationally invariant structure of the Coulomb interaction, and employed Fast 

Fourier Transformation routines. In  the DMRG procedure in our calculations we retain in general 

2048-4096 states, and also exploit the underlying 𝑆𝑈(4) [𝑆𝑈(2) × 𝑆𝑈(2) × 𝑈(1)] symmetry of 

the model Hamiltonian.  

For each number of confined electrons, 𝑁, we calculate the ground state and the first few excited 

states as well as the local density distribution (LDD)  

 𝜌𝑁(𝑥) = ∑ 𝜌𝑘𝑙  𝜑𝑘
∗ (𝑥)𝜑𝑙(𝑥)𝑘,𝑙 , (S7) 

where  
  lkkl cc  is the full density matrix obtained by DMRG. The local density distribution 

is normalized such that ∫ 𝜌𝑁(𝑥)𝑑𝑥
∞

−∞
= 𝑁. Furthermore, to make contact with the experiments, 

we also calculate the differential density distribution 𝜌𝑁(𝑥) − 𝜌𝑁−1(𝑥). Typical results for the 

differential density distribution are displayed in Fig. 4a in the main body of the paper.  

Interaction strength and the definition of  𝑟𝑠  

In a homogeneous gas, the relative strength of electronic interactions is commonly described in 

terms of the parameter 𝑟𝑆, given by the ratio of the inter-electron spacing and the Bohr radius, 𝑟𝑠 =

𝑎/𝑎𝐵. Strictly speaking, this parameter is not well defined for electrons in a quartic potential, 

because there their density is not homogenous, and the inter-electron spacing is not constant. 
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However, in the limit of large number of confined particles, N, we can derive its approximate 

values at the center of the confining potential for very strong and for very weak interactions. We 

will show below that the formula that we derive based on this approximation works surprisingly 

well to describe the average density of electrons in a quartic trap all the way down to 𝑁 = 2. 

In the limit of large values of 𝜂 (strong interactions), appropriate for the regime investigated 

throughout this work, we can neglect the kinetic term in Eq. S4, and determine the positions of the 

particles by just minimizing the classical terms with respect to the positions of each particle, 

yielding the set of equations:  

 ).,,1(,
)(

1
2

3 Ni 
ij ji

i 


 
 

  (S8) 

The solutions have the obvious scaling, 𝜉𝑖 = 𝑥𝑖/𝑙𝑑 ∼  𝑎 / 𝑙𝑑 ∼ 𝜂1/5 , with a the electrons’ 

separation at the center of the trap. This immediately implies the scaling   𝑟̃𝑠 ≈
𝑎

𝑎𝐵
= (

𝑙𝑑

𝑎𝐵
) (

𝑎

𝑙𝑑
)  ∼

𝜂 ⋅ 𝜂1/6 =  𝜂6/5 for strong interactions. To obtain the N dependence of 𝑟̃𝑠, we approximate the 

potential and interaction energies of the trapped gas, 〈 𝑉 〉 and 〈 𝑈 〉 by that of a homogeneous 

crystal of lattice spacing, a, an approximation well justified by numerical solutions of the 

equilibrium positions. A simple integral estimate yields then for the potential energy 〈 𝑉 〉 / 𝐸0 ≈

  𝐶𝑠𝑡 ⋅  𝑁5  (𝑎 / 𝑙𝑑)5 , while for the interaction energy we obtain 〈 𝑈 〉 / 𝐸0 ≈   𝜂 ⋅ (𝑙𝑑 / 𝑎) N ln(N/

e) . Using Virial’s theorem in this classical limit, 4〈𝑉〉 = 〈 𝑈 〉, and the previous approximate 

formulas for the energies yields the approximation 

  𝑟𝑠 ≈ 𝑟̃𝑠 ≡ 𝛾 𝜂
6

5𝑁−
4

5  = 𝛾 (
𝑙𝑑

𝑎𝐵
)

6

5
𝑁−

4

5  ,          𝜂 = 𝑙𝑑/𝑎𝐵 ≫ 1,  (S9) 

valid up to logarithmic corrections. To test the relation between 𝑟̃𝑠 given by Eq. S9 and the 

conventional definition, 𝑟𝑠 = 𝑎/𝑎𝐵 in the low-𝑁 limit, we calculate the equilibrium positions of 

the electrons in the quartic potential using classical Monte Carlo simulations, and extract the 

average inter-electron spacing, 𝑎.  Comparison with the position of the electrons obtained by full 

DMRG calculation yields an almost identical result for strong interactions. Figure S8a shows the 

calculated 𝑎 as a function of 𝜂 for 𝑁 = 2 − 6. The graph in Fig. S8b shows 𝑟𝑠 = 𝑎/𝑎𝐵, as a 

function of 𝑟̃𝑠 given by Eq. S9 with 𝛾 = 2.485. Notably, although the above expression relies on a 
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large 𝑁 approximation, it describes the data down to two electrons very accurately. The full 

DMRG-computed differential densities presented in figure 4 of the main text are presented as a 

function of 𝑟̃𝑠 given by Eq. S9 above. 

 

Figure S8: Definition of 𝒓̃𝒔 and relation to 𝒓𝒔 = 𝒂/𝒂𝑩: a) The average inter-electrons spacing 𝑎 from Monte Carlo 

simulations as a function of 𝜂 = 𝑙𝑑/𝑎𝐵 for 𝑁 = 2 to 6. b) Relation between 𝑟𝑠 = 𝑎/𝑎𝐵 to 𝑟̃𝑠=𝛾 𝜂
6

5𝑁−
4

5 used in the main 

text, using 𝛾 = 2.485. As can be seen, the two definitions agree perfectly.    

Eq. S9 provides an excellent approximation for strongly interacting electrons considered in our 

work. For completeness, let us however shortly discuss the weakly interacting limit, too, where 

the relation between 𝜂 and 𝑟𝑠  is somewhat different. There, in a first approximation, we can neglect 

the electron-electron interaction, and compute the density 𝜌(0) of the degenerate Fermi gas at the 

center of the trap. In the limit of large 𝑁 we can use the semiclassical approximation leading to the 

approximate expression  

 𝑟𝑠 ≡ (𝑎𝐵 𝜌(0))−1  ≈ 𝑟̃𝑠
𝑤𝑒𝑎𝑘 ≡ 𝛼 

𝜂

𝑔
1
3𝑁

2
3

= 𝛼
𝑙𝑑

𝑎𝐵

1

𝑔
1
3𝑁

2
3

 ,           𝜂 = 𝑙𝑑/𝑎𝐵 ≪ 1, (S10) 

with 𝑔 = 4 the degeneracy of the gas and 𝛼 = 2.385.  Thus, in contrast to the strongly interacting 

limit (S9), in the weak coupling regime 𝜂 is directly proportional to 𝑟𝑠. Reassuringly, however, 

Eqs. (S9) and (S10) match each other perfectly in the sense that they both predict the formation of 

the Wigner crystal at approximately the same critical value of 𝜂/𝑁2/3. 
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Correlations and Lindemann number 

The density distribution in Eq. (S7) can be used to determine the density-density correlation 

function, defined as 

    𝐶(𝑥) = ∫ 𝜌𝑁(𝑥′)𝜌𝑁(𝑥 + 𝑥′)𝑑𝑥′
∞

−∞
 .       (S11) 

This correlation function captures both the zero point motion and the crystal structure of the 

confined particles. In Fig. S9 we present 𝐶(𝑥) as a function of the spatial coordinate 𝑥/𝑙𝑑 and the 

strength of the Coulomb interaction 𝑟̃𝑠. Irrespective of the number of electrons in the nanotube, for 

large values of 𝑟̃𝑠, the correlation 𝐶(𝑥)  always displays a central maximum at 𝑥 = 0 whose 

FWHM width Δ𝐶(0) is proportional to the typical width of the peaks in 𝜌𝑁(𝑥) , reflecting quantum 

zero point motion, Δ𝐶(0) ≈ √2 𝑥𝑧𝑝𝑚. The approximate prefactor √2 arises here due to the 

convolution in Eq. (S11), assuming simply Gaussian charge density peaks. Thus, together with the 

average inter-electron separation 𝑎 that we determine from the classical equilibrium positions of 

the electrons, Δ𝐶(0) allows us to give an estimate for the Lindemann coefficient 𝜉 = 𝑎/𝑥𝑧𝑝𝑚, 

plotted in Fig. 4c in the main body of the paper.  
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Figure S9: Density-density correlation function. a-e) The density-density correlation function 𝐶(𝑥) computed with 

DMRG as a function of the coordinate 𝑥/𝑙𝑑  and log of the strength of the electron-electron interaction, log (𝑟̃𝑠). Each 

panel represents 𝐶(𝑥) for a given number of electrons in the nanotube. f) Typical fit of the central peak in 𝐶(𝑥) for 

𝑁 = 3, and 𝑟̃𝑠 = 23 that allows to extract the quantum zero point motion 𝑥𝑧𝑝𝑚. The width (FWHM) of the resonance 

is Δ𝐶(0) ≈ √2 𝑥𝑧𝑝𝑚 . Symbols represent the correlation function 𝐶(𝑥) while the thin red line is the Gaussian fit.  

Exchange coupling 

To determine the exchange coupling displayed in Fig. 4d of the main paper, we have used a 

bottom-up approach, similar to Ref. [2]. Low energy spin and isospin excitations in the Wigner 

crystal regime can be described by an effective 𝑆𝑈(4) symmetrical exchange Hamiltonian 



1,1,

1

12

1






 iiii

N

i

ieff XXJH                     (S12) 

with the operators 𝑋𝑖,𝑖+1
𝜎/𝜏

 exchanging the spins and isospins of neighboring electrons in the 

crystalline state. For small systems of 𝑁 = 2 and 3 electrons, the Hamiltonian (S12) can be 

diagonalized analytically to obtain the spin excitation spectrum. For 𝑁 = 2, e.g., the lowest 16 

states are organized into a 6-fold degenerate antisymmetrical ground state and a 10-fold degenerate 

symmetric excited state. Adding a third electron to the nanotube the spin part of the ground state 

wave function remains completely antisymmetrical and is 4-fold degenerate, while the first excited 

multiplets have mixed symmetry and are 20-fold degenerate. In both cases, the energy separation 

of the ground state and the first excited multiples determine the exchange coupling 𝐽, plotted in 

Fig. 4d of the main text as a function of  𝑟̃𝑠 for 𝑁 =  2 and 3 electrons.  The exponential decay of 

the coupling J with increasing  𝑟̃𝑠 follows from the fact that the exchange interaction in the Wigner 

crystal regime is associated with two electron tunneling processes through the Coulomb barriers 

between the minima of the effective crystal potential. 

Coupled nanotube computations 

To study invasiveness, we modeled the coupled “system” (S) and “probe” (P) nanotubes. In the 

experiments, the system nanotube lies along the 𝑥 direction, while the probe nanotube is aligned 

with the 𝑦 axis, and they are separated at a distance ℎ along the 𝑧 direction. The two nanotubes are 

typically characterized by different effective masses, 𝑚𝑠
∗ and 𝑚𝑝

∗  , different confinement 
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parameters, 𝐴𝑠 and 𝐴𝑝, and they hold 𝑁 and 𝑀 electrons, respectively. It is easy to show that since 

the two nanotubes do not overlap spatially – they only interact through Hartree-type interactions, 

and therefore the full many-body eigenstates can be factorized (apart from a trivial overall 

antisymmetrization) 

  })({})({}){},({ }{}{}{},{ j

P

i

S

ii yxyx
iiii     , (S13) 

with }{ 1 Nix 
 and }{ 1 Ni   denoting the coordinates and 𝑆𝑈(4) spins of the system electrons, while 

}{ 1 Mjy   and }{ 1 Mj  those of the probe particles. The system and probe wave functions, 𝜑𝑠 and 

𝜑𝑝  in this equation are many-body eigenstates of the Hamiltonians  

  (S14) 

with the system and probe Hartree potentials, V
S

H (x) and V
P

H (y)  determined by the charge 

densities in the other nanotube:  
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The eigenstates  𝜑𝑠 and 𝜑𝑝 and the corresponding eigenenergies E
S

 and E
P

of the Hamiltonians 

Eq. (S14) must be determined iteratively through (S15). To find the solutions 𝜑𝑠 and 𝜑𝑝  exact 

diagonalization or DMRG computations are used in each iteration step, and the final (exact) ground 

state energy is determined upon convergence as  

   


 )()(
222

2

total yx
hyx

e
dydxEEE PSPS 


, (S16) 

with the last term correcting for the overcounting of the Hartree energy. 
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