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SUPPLEMENTARY FIGURES 

Supplementary Figure S1: The universality of the critical density and of Hall traces across 

multiple samples. The figure shows the data for samples 2 – 4 (similar data from sample 1 is shown in the 

main text). a) The effective density,  ̃               , calculated from the derivative of the measured 

Hall resistance with respect to magnetic field,        ,  is plotted as a function of   , for various gate 
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voltages,    (brown to red go from the lowest to the highest   ). For each sample we indicate the LAO 

layer thickness, growth temperature and measured mobility at the critical transition (see main text). The 

dashed black line marks the universal critical density,                   , derived in the main paper. 

In all samples, independent of mobility and LAO thickness, we observe a clear change of the characteristic 

traces around the universal density (see text). b) - e) Corresponding plots of the effective density at zero 

field,  ̃       [red line], and high field,  ̃       [blue line], as a function of     for the samples in 

panel a. For all samples these two density traces depart near the universal critical density, marked by a grey 

line in the figures. Above this density,   ̃       continues to rise whereas  ̃       remains roughly 

constant. f) - i) Inverse of the scaling width,   , defined in the main paper, as a function of total density 

obtained from the Hall coefficient at     . Once again, in all the samples, independent of mobility and 

LAO thickness,      extrapolates to zero indicating a divergence of    at the universal critical density, 

                      . Note that the vertical scale of f), h) and i) ranges between 0 and 0.45, 

whereas it ranges between 0 and 0.9 for g). 
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Supplementary Figure S2: Comparing the relative contributions of ASO and diagonal hopping 

terms to the energy dispersion of the heavy bands. a) Calculated bands with diagonal hopping but 

without ASO along the [110] direction in k-space (inset), along which the band mixing is important, using 

the parameters determined by fitting the DFT calculation in Fig.6 of Ref. 13 to the tight binding model 

described in the Supplementary Methods. The gap opened by the diagonal hopping goes as    and 

therefore at the  -point the bands are degenerate. b) Similar calculation, but only with ASO. Here the gap is 

independent of k c) A calculation with both ASO and diagonal hopping terms included (black lines). In this 

case the gap goes as √   
        

    For comparison we also plot in red lines the bands calculated only 

with ASO (as in panel b), clearly showing that the effect of diagonal hopping is negligible several tens of 

meV above the Lifshitz point. 
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Supplementary Figure S3: The band structure at the LAO/STO interface with atomic spin-orbit 

(ASO) interactions. The main panel shows the energy bands without ASO (gray) and with ASO (colored) 

calculated with the ARPES measured
28

 values for the light and heavy masses,          and    

     (   is the electronic mass),  an energy splitting of         , and taking the strength of ASO to 

be           . In the calculation with ASO the states are colored according to their orbital content and 

effective mass: States whose     content is larger than 20% are colored red. The remaining         states 

are colored according to their effective mass, ranging from brown (light mass) to blue (heavy mass) (see 

colorbar). The mass plotted is that along the x direction,                ), but qualitatively similar 

behavior is obtained when we plot the mass averaged over the entire Fermi surface. ASO modifies the 

bands mostly around their degeneracy points. One consequence of that is that the heavy (blue)         

carriers become light (brown) at the bottom of these bands. Inset: The Fermi surfaces 1meV above the 

bottom of the         bands, showing large circular Fermi surface of light     carriers and a small 

circular Fermi surface of light          carriers. 
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SUPPLEMENTARY METHODS 

Data from additional samples. 

Figure 3f of the main text collected data from four LAO/STO samples that differed in 

the number of LAO unit cells and in their mobilities. All these samples showed a critical 

transition at the same universal density. In Fig. 1 we showed the detailed Hall traces of 

sample 1 with 6 unit cells of LAO. In this section we present the detailed Hall traces of 

samples 2 - 4 and analyze them in light of the ASO model described in the last section of 

the Supplementary Methods.  

In the main text we demonstrated that both the Hall resistance,    , and the Hall 

coefficient,         , show clear signatures of the critical density. To make the 

identification of this density even more intuitive we plot in Supplementary Figure S1a a 

related quantity, the effective density,  ̃               , determined from the 

derivative of     with respect to  . Compared to   , this derivative is a local quantity 

and thus accentuates the magnetic field-dependent features in the curves. For each 

sample, we plot in Supplementary Figure S1a,  ̃ as a function of   for various gate 

voltages,   . Notably, in all samples we can identify a clear critical transition density 

when we go from low    (brown traces) to high    (red traces), as is explained below. 

There are two sharp criteria to identify the critical density,   . The first is that below 

   the Hall slopes (and correspondingly  ̃) are identical at zero and high field, whereas 

above    they are different. The second is that once    is crossed, the low field density, 

 ̃      , remains stuck at   . Clearly, all the samples in Supplementary Figure S1a 

exhibit these two changes around the universal value of    (dashed line in the figure). 

Below   , in all the curves  ̃       is roughly equal to  ̃       whereas above 

   the former becomes larger than the latter, and their difference grows with increasing 

  . Furthermore, once  ̃       reaches    it remains stuck at this value although the 

total density continues to rise, as is evident from the crowding of curves near    at 

    . These two changes are seen more directly when we plot  ̃       and 

 ̃       as a function of    for all samples (red and blue traces respectively, in 

Supplementary Figures S1b-S1e). 
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Further evidence for a clear signature of the critical density in these additional samples 

comes from extracting the characteristic width,   , of their    traces. This width was 

obtained by fitting the    trace at each    to a Lorentzian, as was shown in Fig. 2c. 

Supplementary Figures S1f - S1i show the result of the fit as a function of the total 

density, ))9(/(1 TBeRn Htotal  . The scaling width reflects the mobility of the system 

(see Eq. S4 below) and therefore not only changes from sample to sample but also at each 

gate voltage    since the mobility changes as    is varied. However, in all samples the 

inverse of the scaling width,     , appears to diverge as the total density is lowered to 

the critical density,                  , thus highlighting the universal nature of the 

Lifshitz transition. 

Careful examination of the curves reveals that at intermediate magnetic fields there are 

fine features, which are not captured by the above analysis. These are apparent as small 

dips in  ̃, which are equivalent to the peaks of    at      shown in Fig. 1c for sample 

1. The physics of these dips in  ̃ (peaks in   ) will be described in a future publication. 

Here, however, we want to comment on their relation to the multiple-band physics. 

Above    these dips show a strong correlation with the signatures of multiple bands. As a 

function of magnetic field these dips always appear right before the sharp rise in  ̃, 

associated with the multiple bands. The magnetic field position of this rise varies 

substantially with gate voltage, however, as can be seen from Supplementary Figure S1a 

the dips in  ̃ always perfectly track the position of this rise. The exact same behavior was 

observed for sample 1 in the main text, where we showed that peaks in    and the 

   falloff associated with multiband physics scale together in magnetic field (Fig. 2c).  

Interestingly, we can see in Supplementary Figure S1a that the dips in  ̃ appear also 

below   . Moreover, if we track the magnetic field position of these dips we see that they 

evolve continuously across the transition. These observations hint that even below    

there is a mild multiple-band behavior which evolves continuously into the strong 

multiple-band behavior commencing at   . One might expect weak multiple-band 

signatures from higher     subbands, however, since these subbands are independent of 

the          bands that are responsible for the strong multiple-band behavior above   , 

generally the former would not continuously evolve to the latter. A much more natural 
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explanation for the above observation is given by the ASO model described in the last 

section of the Supplementary Methods. Within this model the mass of the         

carriers changes rapidly but continuously from light to heavy as a function of the filling 

of these bands. It is thus straightforward to assign the weak multi-band signatures below 

   to the light         carriers and the strong multi-band signatures above    to the 

heavy          carriers at higher filling. Within this model the evolution would indeed 

be sharp yet continuous as we see in our measurements.  

 

The two-band approximation to the transport above the critical density.  

The simplest model for understanding the behavior of the transport above the critical 

density is the two-band approximation
24

. This model assumes that two types of carriers 

are conducting in parallel, each having its own density and mobility. It also assumes that 

the parameters of these bands are independent of  . This model is often used in the 

LAO/STO literature to extract the mobilities and densities of two carriers when Hall 

resistance traces are S-shaped. In this section we show that this model should be used 

with caution. While it can capture some basic features of the data, it can also lead to large 

mistakes in some of the extracted parameters. In the main text we were therefore careful 

to use only the robust predictions of this model that are insensitive to its assumptions 

which might be violated. 

Assuming two parallel conducting bands whose densities and mobilities are 

2211 ,,,  nn  the model predicts that the Hall coefficient of the combined system,   , and 

its longitudinal resistance,    , should have Lorentzian shapes as a function of  : 
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where the asymptotic values of these two quantities at zero and infinite fields can be 

written in terms of the parameters of the bands as: 
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and: 
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The model further predicts that the Lorentzians of both 
HR  and 

XX  should have the 

same characteristic width in magnetic field: 
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In Figs. 2c and 2d in the main text we compare the measured 
HR  and 

XX  traces at gate 

voltages above the critical density with a Lorentzian fit and indeed find a reasonable 

agreement with this functional form. Moreover, as is predicted by the model, we see that

HR  and 
XX share the same characteristic field scale, WB . We demonstrated this by 

showing that if for every gate voltage we use the characteristic field with which we 

scaled 
HR   to scale the 

XX  at the same gate voltage, we get that all the 
XX  traces 

perfectly collapse onto a universal curve. Thus, overall it seems like this simple model 

can capture the basic features in our data.  

However, if we carefully examine the fits of the model we can clearly identify 

systematic deviations. For example, we see that at low field both 
HR  and 

XX deviate 

from Lorentzians – the former peaks at a finite field  PB  and not at zero, and the latter is 

extremely flat up to 
PB , both deviating from the simple Lorentzian dependence. Clear 

deviations are also observed at high fields, especially in 
XX , which shows a linear 

increase as a function of B up to the highest field in our measurements, inconsistent with 

the Lorentzian shape. One might consider improving the model by implementing more 

realistic bands: three bands instead of two, elliptical Fermi surfaces instead of spherical, 

and even including the effect of ASO. We found, however, that even when we include 

these details, the above deviations could still not be explained. 
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In the literature the above details are often ignored, and a rough fit to kinked Hall 

curves is used to extract two densities and two mobilities for the carriers. Such fits can 

give apparently reasonable values of mobilities and densities, especially at high total 

densities. We find, though, that using this model brute-force to systematically study the 

gate dependence of the extracted parameters leads to unphysical results. For example, we 

get that the total density in the bands decreases with increasing gate voltage, which is 

clearly wrong. The most significant error in the model is in its prediction of the crossover 

field. As can be seen from Eq. S4, when the density of the second band, 
2n , is low (as is 

the case near the critical point) the model predicts a crossover field at 2/1 WB , the 

inverse of the lower mobility of the two bands, whereas in our data we consistently find 

that the crossover appear at 1/1 WB , the inverse of the higher mobility of the two 

bands.  

In a future publication we will describe a more elaborate model which we believe can 

account for the above observations. Here, however we do want to note that the main 

problem of the simple two-band model is its assumption that the parameters of the bands 

are independent of magnetic field. As a result, one has to be cautious when using this 

model, and extract from it only robust parameters that are insensitive to this assumption. 

The parameters that are most sensitive to this assumption are the mobilities of the two 

bands, which are directly affected by the inconsistencies between the model and the data 

in the value of WB , described above. Thus, imposing the two band model on the data 

would often result in large errors in the extracted mobilities. In the main text we were 

therefore careful not to extract the mobilities, but extracted only the densities which are 

less sensitive to the errors of the model. Specifically, to extract the densities we have 

used in the main text two identities: The first relates the Hall coefficient at large fields 

with the total density,  totalenR /1 . As can be seen from Eq. S2 above, this identity is 

always valid independent of the mobilities of the two bands. The second relates the Hall 

coefficient at B=0 to the density of the high mobility band,  
highenR /10  . This identity 

is mathematically correct in two independent cases: when the mobilities of the two bands 

are substantially different, or when the density of the second band is low enough 
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2112 / nn  , as is the case near the critical density. If our assumption of substantially 

different mobilities in the two bands is not accurate, this could modify our extracted 

densities much above the critical density, however, near the critical density the picture 

that we presented would still be completely accurate. Specifically, the determination of 

the universal density, which is a main point in this paper is completely robust and would 

not depend on any assumptions about the mobilities. 

 

Details of the calculation of the energy bands with atomic spin-orbit interactions 

In the absence of spin-orbit coupling, the effective Hamiltonian is decoupled from the 

spin degree of freedom. Near the bottom of the three     bands it is given by 
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where the three dimensional Hilbert space represents the    ,    , and     bands 

respectively, lm
 
is the light mass, hm  the heavy mass, 

E  the splitting of the     from 

the other two bands due to the transverse confinement, and    is a band mixing term 

resulting from diagonal next-nearest-neighbor hopping between     and     orbitals. 

The last term is the dominant orbital mixing term between the heavy bands and is known 

to be significant in the band structure of transition metals. To quantitatively determine the 

actual size of this term in the LAO/STO system we fitted the DFT calculation in Ref. 13 

to the tight binding model above, yielding          
  . The fit describes accurately the 

heavy bands over the entire Brillouin zone including their splitting along the diagonal 

direction in k-space which directly reflects the diagonal hopping term. 

The same Hamiltonian in the full six dimensional Hilbert space, including spin, can be 

written as         , where    is the 2 by 2 identity matrix. The atomic spin-orbit 

term is written in the same space as: 
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              ∑       
    , 

where    are the Pauli matrices acting on the spin and    are angular momentum-2 

matrices, projected to the space of the three     orbitals. Because the spin-orbit coupling 

is completely local the Kramer's degeneracy at the atomic level is carried over to all 

wave-vectors. 

Another type of coupling between the     orbitals can be induced because the 

transverse confinement is not symmetric to reflection        . This allows coupling 

between the     and     through anti-symmetric hopping along y and similarly between 

the     and     in hopping along x. Such couplings are encapsulated in the term: 

     [

       

      

          
]     

Since this term is not fully local (i.e. it is momentum dependent), it splits the band 

degeneracy. In fact, taken together with the ASO this last term generates an effective 

Rashba coupling near the bottom of the     band. We note however that under realistic 

conditions      is much smaller than     and therefore the Rashba splitting of the bands 

will be almost unnoticeable on the scale of Supplementary Figure S3. 

To understand the relative importance of the different band-mixing terms we plot in 

Supplementary Figure S2 the energy bands calculated with realistic parameters for three 

different cases: Including diagonal hopping but without ASO (Supplementary Figure 

S2a), including ASO but without diagonal hopping (Supplementary Figure S2b) and 

including both ASO and diagonal hopping (Supplementary Figure S2c). The energy 

bands in the figure are plotted along the [110] direction in k-space, along which the heavy 

bands are degenerate and their mixing is important.  

Supplementary Figure S2c shows that when both ASO and diagonal hopping are present 

the effect of the latter near the bottom of the heavy bands is negligible. The reasons for 

that are simple: First, unlike the ASO-induced mixing, which is k-independent and 

therefore sizable for all Fermi energies, the diagonal hopping term goes as    and thus 
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disappears near the bottom of the bands. Furthermore, the contributions of these two 

terms to the energy are not additive, but rather go as √   
        

 ,  reducing the effect of 

diagonal hopping even further whenever it is smaller than the ASO. For typical carrier 

densities in LAO/STO the Fermi energy lies only few meV above the bottom of the 

heavy bands, and in this range diagonal hopping has a negligible effect on the bands 

calculated with ASO which are presented in the main text. 

 

The band structure with atomic spin-orbit interactions and its relation to the 

observed transport properties. 

In the first part of the main text we used the simplest band model that captured the 

essential features of the Lifshitz transition. We then showed that the inclusion of atomic 

spin-orbit (ASO) interactions can further explain the strong correlation between the 

transition point (the bottom of the     and     bands) and strong spin-orbit interactions, 

as observed experimentally. In this section we demonstrate that the refined band structure 

with ASO has additional features that may explain other surprising observations in the 

LAO/STO system. For example, we argue that such a model can naturally explain why 

carrier densities extracted from Shubnikov-de-Haas oscillations are so much lower than 

those determined by Hall measurements
18,19,36-38

.  

Supplementary Figure S3 shows the energy bands calculated with and without ASO 

(colored and grey lines correspondingly). The details of the calculations were explained 

in the previous section. As can be seen in the figure, the effect of ASO is strongest near 

band degeneracy points. At these points ASO hybridizes the electronic states and opens 

energy gaps in the spectrum. Such degeneracies exist between the     and     bands at 

the  point of the Brillouin zone, and between the     and the other two bands at their 

crossing points.  Since the heavy band is very shallow, these three types of crossings 

appear close in energy, around the transition point. 

Note that the full band structure, calculated by DFT
13

, has also other non-SO terms 

that mix the     and     bands and open a hybridization gap between them. These are 

fully captured by a second-nearest-neighbor diagonal hopping term,   , that mixes the 
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    and     orbitals. When we add this term to our Hamiltonian (previous section) we 

can accurately reproduce the DFT bands at low Fermi energies (<100meV) relevant to 

our experiments. In fact, since the SO term is independent of the momentum whereas the 

diagonal hopping term is quadratic in it, the effect of the latter is negligible in all relevant 

Fermi energy and thus the band structure in Supplementary Figure S3 is a reliable 

representation of the full band structure. 

ASO forms the basis for all spin-orbit interactions in the system. Specifically Rashba 

SO that appears when inversion symmetry is broken, is just a second order perturbation 

process in ASO. Thus the dependence of ASO on the Fermi Energy determines directly 

the dependence of any SO interactions on the Fermi Energy, including that of the Rashba 

and other equivalent momentum-dependent SO terms.  

ASO has two important consequences that significantly affect the transport in this 

system: 

1. Spin is strongly coupled to the orbital momentum near the Lifshitz critical 

density. Around this point the    ,     and     bands cross, allowing the spin-orbit 

coupling to strongly hybridize them and form superpositions with well-defined atomic 

orbital momenta. For example, the degenerate    /    states at the  point hybridize to 

form the             states, with a well-defined projection of the orbital momentum 

along the z direction,      . At the same time, the spin becomes strongly coupled to 

this orbital momentum. Since the orbital momentum has a preferred axis of orientation 

(e.g. the z-axis for the example above), the spin is also preferably aligned along this axis, 

and an energy of the order of      is required to polarize it away from this axis.  

 When the Fermi energy is increased above the degeneracy points, the band splittings 

due to the different dispersion of the    ,     and     orbitals become increasingly 

dominant over the ASO coupling and the effect of the latter decays. In Fig. 3k of the 

paper the enhancement and subsequent decay of the characteristic spin-orbit scale is seen 

from the variation with the Fermi energy of the expectation value 〈   〉, integrated 

around the Fermi surface. 
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 Further refinement to this picture is given by the transverse confining potential, 

which breaks the inversion symmetry perpendicular to the plane. This allows for a small 

tunneling matrix element between d-orbitals of different symmetries on neighboring 

atoms. Combined with the strong ASO coupling, this additional tunneling leads to a 

small, Rashba-like splitting of the energy bands away from the  point. This effective 

Rashba coupling is a direct consequence of the ASO coupling and is thus also peaked 

near the critical density. However, since it relies on small, field-induced hopping 

elements, its effect would be much weaker than that of the ASO coupling. 

 

2. The heavy    /    carriers become light at the bottom of their bands.  

The         carriers play a central role in the observations reported in this paper. These 

carriers have a much larger in-plane mass than the light     carriers. Therefore their 

population is associated with a large jump in the DOS, which is consistent with the 

transition that we measure in transport. In a simple band model without ASO this jump is 

abrupt, occurring when the Fermi energy crosses the bottom of the         bands. ASO, 

however, modifies this picture by drastically changing the mass of the         carriers 

near the bottom of their bands. 

 To demonstrate this effect we have colored the eigenstates in Supplementary Figure 

S3 according to their orbital content and effective masses. The     carriers are colored 

red, and the         are colored by a continuum of colors that represent their effective 

mass, ranging from brown (light mass) to blue (heavy mass) (see caption for details). At 

high energies the         states have indeed a heavy mass (blue). However, close to the 

bottom of the band we can clearly identify a low-energy tail in which the     

    carriers are light. This effect is a robust consequence of the hybridization gap created 

by ASO at the degeneracy point between the         orbitals. While the amount of light 

carriers contained in this low-energy tail is proportional to the strength of ASO, the light 

mass obtained at its bottom is always the same. In fact, it is straight forward to show that 

this mass is approximately twice the light mass,        
     

          (where 

   and    are the light and heavy masses in the absence of ASO). In contrast to the case 

without ASO, here the mass of the          carriers depend on the Fermi energy, 
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evolving continuously from a light mass at the bottom of the band to a heavy mass at 

higher Fermi energies  

 To further demonstrate the light nature of the         carriers near the bottom of 

the band, we plot in the inset to Supplementary Figure S3 the Fermi surfaces at low band 

filling. In addition to the circular     Fermi surface we see a small, circular, Fermi 

pocket that corresponds to the light         carriers. This is in sharp contrast to the 

picture without ASO where the         Fermi surfaces are elliptical and heavy even at 

the bottom of their band. While the actual size of ASO in this system is yet to be 

determined experimentally, from transport experiments
10,12

 and ab-intio calculations
33

 we 

expect it to be in the range               . For such ASO strengths the density of 

light carriers that the         band can accommodate before it becomes heavy is about 

              . 

 The existence of light         carriers has important implications for the transport 

in this system. On Hall measurements we expect the effect of these carriers to be rather 

small. The Hall resistance measures the parallel addition of these carriers and the      

carriers. Since the effective masses of these two types of carriers are comparable and thus 

also their mobilities, even when these two types of carriers coexist, their combined Hall 

resistance would behave as the Hall resistance of a single carrier-type with the total 

density of both. A dramatically different result will occur when one measures the 

Shubnikov-de-Haas oscillations. These oscillations measure the individual bands 

independently, giving a different oscillation frequency for each carrier type, which is 

directly proportional to their individual densities. Since the density of the light         

carriers is significantly smaller than that of the      carriers, it would result in 

substantially different oscillation period as a function of 1/B. In fact, all Shubnikov-de-

Haas measurements in LAO/STO interfaces
18,19

 as well as those in -doped STO
36-38

 have 

robustly observed a pocket of light mass carriers with densities in the range         

        . These measurements extracted a mass of             , which is twice 

that measured by ARPES
28,29

. The factor two discrepancy between these two 

measurement techniques is in fact consistent with the ASO model; ARPES experiments, 

done on a bare STO surface with much higher electron density, determines the masses 

from high energies and thus yields the bare light mass, whereas transport is sensitive to 
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the low energies dispersion which is renormalized by ASO. So far the low density 

pockets measured by Shubnikov-de-Haas were explained by higher subbands of     

carriers. However, as we see here, the effect of ASO provides an alternative, robust, and 

intrinsic mechanism for the existence of such light carriers, of the         type. 

There are two important features of the light         carriers that set them apart from 

light     carriers at higher subbands. First, in the ASO model the appearance of the light 

pocket is intimately tied to the bottom of the         bands, namely to the critical 

density. This is in contrast to higher     subbands whose energies do not have to 

coincide with the          band bottom. Secondly, a scenario that includes several     

subbands would involve several discrete transitions as a function of the Fermi energy, 

e.g. a transition from a single light carrier type at the lowest     subband to two carrier 

types in the two lowest     subbands, and finally to three carriers types that include also 

the heavy         carriers. In contrast, in the ASO model when the         start 

populating there are always only two carrier types. At low filling these are the     and 

light         carriers and at high filling they are the     and heavy         carriers. 

Although the transition between these two cases is rather sharp as a function of increasing 

Fermi energy, it is a continuous crossover. The strong two-band signatures that we 

observed in the paper should appear only when heavy carriers are populated. However, if 

this model is correct, we might expect to see weak signatures of the light mass tail even 

below the critical density and these signatures should evolve continuously to the strong 

two-band features above the critical density. In the first section of the Supplementary 

Methods, we presented detailed Hall resistance data that complemented the one shown in 

the main text and analyzed it in light of these predictions. 
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SUPPLEMENTARY DISCUSSION 

Universal shape of the confining potential at the LAO/STO interface 

The two-dimensional electrons near the LAO/STO interface are confined by a 

potential well whose shape can depend on several parameters including the thickness of 

the LAO, the electric field from the back gate, and the nonlinear dielectric constant of 

STO. This shape affects the energy splitting between the 
XYd  and 

YZXZ dd / bands, and 

the splitting in turn determines the carrier density at the Lifshitz transition. Thus, if the 

well shape can change between samples of different LAO thicknesses or even within a 

single sample as a function of the back gate voltage, then why is the observed Lifshitz 

transition density universal? 

Naively, one would expect the Lifshitz density to be universal only if the confinement 

well shape is fixed. But this simple picture is not true: the Lifshitz transition density can 

be universal even if the confinement well shape is changing, as long as the shape of the 

confinement well depends only on the confined carrier density. Namely, for different 

carrier densities the shape of the potential might be different, but for any given density 

this shape is always the same. If this is the case, then at the critical density, the well 

shape and energy band splitting are always the same and therefore (self consistently) the 

critical density is uniquely defined, although the shape of the well changes with carrier 

density. But why would the shape of the well be uniquely determined by the carrier 

density? 

In general one might expect the well shape to depend on two independent parameters: 

The electric field created from the LAO side and the field from the back gate side. If this 

is the case then one could get the same carrier density with different potential wells 

thereby leading to a non-universal Lifshitz density.  Experimentally, however, transport 

measurements
43

 demonstrate that for an LAO thickness above 4 unit cell the densities and 

mobilities of the conducting 2D electrons do not change as a function of LAO thickness, 

showing that the thickness of LAO has small effect over the well shape thereby 

supporting our universal density scenario. 
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One possible way to understand this effect is to consider the nonlinearity of the 

dielectric constant of STO. When the LAO layer is thicker than 4 unit cell electrons are 

transferred from the LAO surface to the interface to reduce the built-in dipole inside the 

LAO, such that both the valence band of LAO at the surface and the conduction band of 

STO at the interface remain at the Fermi energy. The amount of transferred charge 

(conducting and localized) is correspondingly
44

: 
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where a is the lattice constant of LAO, LAOd  is the thickness of the LAO layer and 

ucdC 4  is the critical thickness for the polarization “catastrophe”. In the limit of thick 

LAO this formula gives half an electron per unit cell. The field,  , created at the STO 

side of the interface by this transferred charge is: 
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This large field has a dramatic effect on the dielectric constant of STO, STO , near the 

interface. This constant is known to strongly depend on the electric field
45

. At low fields 

STO  is very large and has weak field dependence. Around a critical field, CE ,  it drops 

sharply to 1STO
 
and it remains at this value for all fields above that. To understand the 

possible consequences of this strong nonlinearity we approximate this dependence by a 

very crude model that assumes that STO
 
drops from a large value (~10,000) to unity as a 

step function at the field CE . Under this simplifying assumption the potential well will 

have two distinctive regions: Near the interface the field is always above CE  resulting in 

1STO . Since the field is not screened in this region, the potential well is steep. This 

sharp part of the potential well is believed to confine most of the localized electrons to 

the TiO2 plane nearest the interface, which is the majority of the transferred carriers. 

Once the field crosses CE
 
it becomes strongly screened and the well becomes much 
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shallower. This part of the well is the one that confines the mobile electrons. Notably, 

within this model, the boundary condition for the confining potential for the mobile 

electrons is always given by CE , independent of the amount of charge that is transferred 

from the LAO side. Although this model is over-simplified, especially since the non-

linearity of STO  should play an important role even in the shallow part of the well, it still 

captures its leading effect on the confinement potential shape and demonstrates why in 

the presence of non-linear STO  this shape will depend weakly on the LAO thickness, 

thereby suggesting why the Lifshitz transition density could be universal, as we observe 

in our experiments.  
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